m olality of

2r(IV)					
h			0.005		
0.98	0.94	0.96	0.003		
1.18	0.48	0.41	Hf not detectable		
		molality of solutes $\times 10^2$	initial atomic	atomic ratio of $Hf(IV)$ ratio of Hf/Zr Hf/Zr in product	

For a determination of the nature of the reduction product, the black precipitate observed at the electrode after electrolysis at **<O** V vs. the Al(III)/Al reference electrode was treated with molten Al_2Cl_6 (to remove remaining NaCl) and filtered. The residual Al_2Cl_6 was removed by sublimation under vacuum; the shiny black precipitate was examined by powder X-ray diffraction. The powder pattern showed that the precipitate was either $Al₃Hf¹⁰$ or a mixture of $Al₃Hf$ and aluminum. Thus a simultaneous reduction of Hf(1V) and Al(II1) is observed; depending on the ratio of $Hf(IV)$ to $Al_2Cl_7^-$ and the potential of the electrode, the product is either A1,Hf or a mixture of that compound with aluminum.

2. Electrochemical Separation of Zirconium from Hafnium. Since the difference between the reduction of $Zr(IV)$ and $Al₂Cl₇$ increases slightly when the chloroaluminate melts become less acidic, melts containing \sim 50.5 mol % AlCl₃ were used for the separation experiments. The solubility of HfCl₄ in these melts at 175 °C is $\sim 8 \times 10^{-2}$ m. In a typical controlled-potential electrolysis experiment 50 g of an AlCl₃-NaCl (50.5 mol % AlCl₃) melt containing $\sim 10^{-2}$ *m* each of ZrCl₄ and $HfCl₄$ was used. The potential of a tungsten spiral cathode (area 3.5 cm²) was controlled at 0.09 V vs. the Al(III)/Al reference electrode in the melt of the same composition. A reticulated vitreous carbon cylinder (4 cm long, 0.5 cm in diameter) was used as an anode; it was separated from the main compartment by a Pyrex frit of medium porosity. After 14 h of electrolysis at 175 °C voltammograms obtained at a tungsten microelectrode indicated that most of the $Zr(IV)$ was reduced. The product was scraped from the electrode; residual $ZrCl₄$, HfCl₄, and Al₂Cl₆ were removed by sublimation at 205 "C. The product after sublimation was examined by X-ray fluorescence. This analysis showed that the atomic ratio of Hf/Zr decreased from 0.96 before the electrolysis to 0.003 in the product of the electrolysis. The Raman spectrum of the product showed a sharp line at 212 cm^{-1} , characteristic of $ZrCl₃$.⁴ Results of three experiments are given in Table I. An excess of charge was involved in the reduction step; for example, in the experiment described above 164 coulombs were consumed compared to the expected value of 47 coulombs. It is likely that some of the chlorine produced at the anode reached the cathode to oxidize the ZrC1, product.

In preliminary experiments using platinum as the anode, the black cathodic deposit contained significant amounts of platinum. Clearly the use of platinum as an anodic counterelectrode in molten chloroaluminates should be avoided. In summary, we have demonstrated that hafnium-free zirconium can be produced by controlled-potential electrolysis using slightly acidic chloroaluminate melts. The separation factors achieved electrochemically are better than those achieved previously by chemical reduction. 6

Acknowledgment. This research was supported by National Science Foundation Grant CHE-77-21370. M. Katabua acknowledges support by the Fulbright Foundation.

Registry No. Zr, 7440-67-7; Hf, 7440-58-6.

Contribution from the Department of Chemistry, The University, Southampton *SO9* **5NH,** United Kingdom

Synthesis of Substituted Octahedral Anions of Chromium(III), [R4N][cis -Cr(L-L)X4], and the Nature of $Cr(L-L)_{1.5}X_3$ (L-L = Diphosphine or Diarsine; X = Cl, **Br)**

Annette L. Hale, William Levason,* and Francis P. McCullough¹

Received February 1, 1982

Octahedral halo anions MX_6^{π} are known for most transition metals, but substituted analogues containing neutral mono- (L) or bidentate (L-L) ligands are rare, especially in the 3d series.² The green $[Ph_4P][trans-CrL_2Cl_4]$ (L = PEt₃, P-n-Bu₃) were obtained from $[CrL_2Cl_3]_2$ and Ph₄PCl in CH_2Cl_2 .³ During a study of chromium(II1) complexes with soft donor ligands, as a prelude to examining small-molecule $(O_2, NO,$ etc.) binding by chromium complexes, we isolated the *cis-* $[Cr(L-L)X_4]$ ⁻ (X = Cl, Br) ions as R_4N^+ salts. Nyholm⁴ obtained materials of empirical formula $Cr(das)$, ${}_5X_3$ (das = $o\text{-}C_6H_4(AsMe_2)_2$ from chromium(III) halides and the ligand in moist acetone or alcohol, for which the three most likely formulations are $[Cr(das)_2X_2][Cr(das)X_4]$, $[Cr(das)_3][CrX_6]$, and $(das)X_3Cr(das)CrX_3(das)$. Since treatment with HClO₄ converted $Cr(das)_{1.5}X_3$ into $[Cr(das)_{2}X_2]ClO_4$, and attempts to prepare $[Cr(das)₃]$ ³⁺ failed, Nyholm favored the first formulation. It should be noted however that a ligand-bridged dimeric structure was proposed for $Cr(Ph_2PCH_2)$ - CH_2PPh_2)_{1.5}X₃·nH₂O.⁵ Our synthesis of $[Cr(L-L)X_4]$ ⁻ led us to reinvestigate the Cr(das), ${}_{5}X_{3}$ complexes.

Results and Discussion

The reaction of $CrCl₃(THF)₃$, n-Pr₄NCl, and the appropriate bidentate ligand $(L-L)$ in dry $CH₂Cl₂$ produced the tetrapropylammonium **cis-tetrachloro(ligand)chromate(III),** $(AsMe₂)₂$, $Ph₂PCH₂CH₂PPh₂$, *cis*- $Ph₂PCH=CHPPh₂$, *cis-* $Ph₂AsCH=CHAsPh₂$), as blue powders. The $[Ph_3PCH_2Ph][Cr(\sigma-C_6H_4(AsMe_2)_2)Br_4]$ was obtained similarly (Table I). Attempts to isolate these anions using smaller cations were unsuccessful. It should be noted that reaction of $CrBr₃(THF)₃$ with $R₄NBr$ in a 1:1 ratio in $CH₂Cl₂$ produces deep green solutions that may contain $[R_4N][Cr(THF)_2Br_4],$ although we have been unable to isolate these. The complexes are 1:1 electrolytes in 10^{-3} M nitromethane solutions and have magnetic moments ca. 3.88 μ_B as expected for d³ Cr(III). The $[n\text{-}Pr_{4}N]$ $[Cr(\text{-}C_{6}H_{4}(PMe_{2})_{2})Cl_{4}]$ complex is deliquescent, but the others are stable to moist air for short periods of time but are fairly readily decomposed by water or alcohols in solution. In spite of this, attempts to displace one halide from $[Cr(\sigma C_6H_4(AsMe₂)₂)Cl₄$ ⁻ by stirring or heating CH_2Cl_2 or toluene solutions with monodentate ligands such as $PhMe₂P$, $PPh₃$, AsMe₂Ph, or MePhS (L), failed to give $[Cr(\sigma-C_6H_4 (AsMe₂)₂)_{LCl₃}$], most of the starting complex being recovered unchanged. $[Pr_4N][cis-CrCl_4(L-L)]$ (L-L = $o-C_6H_4(PMe_2)_2$, $o-C_6H_4$ -

The far-IR spectra of a cis- $[CrCl_4(L-L)]$ ⁻ ion should show four chromium-chlorine stretching vibrations $(2A_1 + B_1 +$ B,), and despite the complications produced by absorptions of L-L in the same region, three or four bands were generally

(5) W. Baker and P. Lutz, *Inorg. Chim. Acta,* **16,** 5 (1976).

⁽IO) A. E. Dwight, J. W. Downey, and R. **A.** Conner, *Acta Crystallogr.,* 14, 75 (1961).

⁽¹⁾ Present address: Dow Chemical Co., Freeport, TX.

⁽²⁾ R. Colton and J. H. Canterford, "Halides of **the** First Row Transition Metals", **Wiley,** New York, 1968.

⁽³⁾ M. A. Bennett, **R.** Clark, and **A.** Goodwin, *J. Chem. Soc. A,* 541 (1970). (4) R. S. Nyholm and G. Sutton, *J. Chem. Soc.,* 560 (1958).

Table **I.** Chromium(lI1) Physical and Spectroscopic Data

complex	$% C^a$	$\%$ H	$\% X$	$\%$ N	$\%$ Cr	color	ν (Cr-X), cm ⁻¹ <i>b</i>
$[NPr_4][Cr(o-C_6H_4(PMe_2)_2)Cl_4]$	45.3 (45.6)	7.9 (7.6)	24.3 (24.6)	2,2 (2.4)	\cdots	purple	375 sh, 355 m, 330 s, 305 sh
$[NPr_4][Cr(O-C_6H_4(AsMe_2)_2)Cl_4]$	39.4 (39.6)	6.1 (6.6)	21.8 (21.3)	2.0 (2.1)	7.2 (7.8)	blue	358 sh, 333 m, 325 s, 312 sh
$[NPr_a][Cr(Ph, PCH, CH, PPh,)Cl_a]$	58.5 (58.6)	6.1 (6.7)	17.0 (18.2)	1.9 (1.8)	5.9 (6.7)	purple	366 sh, 340 m, 315 sh, 300 s
$[NPr_{A}][Cr(Ph, PCH=CHPPh_{2})Cl_{A}]$	58.4 (58.7)	6.7 (6.4)	17.9 (18.3)	1.9 (1.8)	6.3 (6.7)	purple	340 s, 315 s
$[NPr_a][Cr(Ph, AsCH=CHAsPh,)Cl_a]$	52.2 (52.8)	5.4 (5.6)	16.2 (16.8)	1.7 (1.6)	6.0 (6.0)	purple	346 m, 335 s, 302 s
$[PPh_3CH_2Ph][Cr(O-C_6H_4(AsMe_2)_2)Br_4]$	41.8 (41.5)	3.6 (3.8)	30.9 (31.7)	\sim \sim \cdots	\cdots	blue	312 m , 285 s, 258 s
$Cr[0-C6H4(AsMe2)2]1.5Cl3$	30.5 (30.7)	4.0 (4.1)	18.0 (18.1)	α , α \sim \sim \sim	\cdots 9.3 (8.8)	green	380 m, 333 sh, 321 s, 307 sh
$Cr[o-C6H4(AsMe2)2]1,5Br3$	25.4 (25.0)	3.8 (3.3)	32.6 (33.3)	\cdots	\cdots	green	320, 285, 258 sh
$[Cr(O-C_6H_4(AsMe_2)_2)_2Cl_2]ClO_4$	30.3 (30.2)	4.3 (4.0)	\cdots	\sim \sim \sim α , α , α	\cdots \cdots	bright green	380 m
$[Cr(\sigma-C_6H_4(AsMe_2)_2)_2Br_2]ClO_4$	27.2 (27.2)	3.6 (3.6)				bright green	320 _m

a Found values are given, with calculated values in parentheses. Nujol mulls. All complexes have magnetic moments close to **peff** = 3.88 μ _B/Cr as expected for Cr(III).

identified (Table I). The characterization of these $[CrX₄ -$ (das)]- complexes enabled us to definitely identify the structure present in $Cr(das)_{1,5}X_3$ (X = Cl, Br), by far-IR spectroscopy. (Attempts to grow crystals of $Cr(das)_{1.5}X_3$ for X-ray crystallographic examination were frustrated by the poor solubility, and only powders were produced from in situ syntheses.) The $[Cr(das)₂X₂]ClO₄$ were readily obtained by treatment of $Cr(das)_{1,5}X_3$ with HClO₄, and as can be seen from Table I, the bands in the IR spectrum of $Cr(das)_{1.5}Cl_3$ in the range **400-200** cm-' are all accounted for by superimposition of the spectra of $[Cr(das)Cl₄]⁻$ and $[Cr(das)₂Cl₂]⁺$. Similar conclusions are drawn for $Cr(das)_{1,5}Br_3$, although here the overlapping of Cr-Br and ligand bands makes the spectral assignments more difficult. Thus the far-IR spectra demonstrate that the $Cr(das)_{1.5}X_3$ complexes are indeed [trans-Cr- $(das)_{2}X_{2}$ ⁺ [*cis*-Cr(das) X_{4}]⁻.

Experimental Section

All reactions were carried out under dry dinitrogen by using standard Schlenk tube and dry box techniques. $CrCl₃(THF)₃$ was prepared from anhydrous CrCl₃, zinc dust, and dry tetrahydrofuran,⁶ and $CrBr₃(THF)₃$ analogously from anhydrous $CrBr₃$. Physical measurements were made as described previously.'

 $Cr[o-C_6H_4(AsMe_2)_2]_{1.5}X_3$ (X = Cl, Br). $CrX_3(THF)_3$ (1 mmol) was dissolved in dry dichloromethane (20 cm³), the solution filtered, and o -phenylenebis(dimethylarsine) (0.57 g, 2 mmol) added. When the mixture was stirred at room temperature, green solids separated, which were filtered off, rinsed thoroughly with diethyl ether, and dried in vacuo; yield ca. 70%.

mmol) was added to 40% aqueous perchloric acid and the mixture stirred for 4-5 h. The bright green solids were separated by filtration and washed with distilled water, until the washings were colorless. The solids were rinsed with diethyl ether and dried; yield ca. 65%. $[Cr(\sigma -\hat{C}_6H_4(AsMe_2)_2)_2X_2]ClO_4.$ $Cr[\sigma -C_6H_4(AsMe_2)_2]_{1.5}X_3$ (1

 $[N-n-Pr_4]$ [Cr(L-L)Cl₄] (L-L = o -C₆H₄(AsMe₂)₂, Ph₂PCH₂- CH_2 PPh₂, cis-Ph₂PCH=CHPPh₂, Ph₂AsCH=CHAsPh₂. n-Pr₄NCl was dried by heating at 80-90 $^{\circ}$ C in vacuo for 2 days. The appropriate ligand (2 mmol), $CrCl₃(THF)₃$ (2 mmol), and n-Pr₄NCl (2 mmol) were dissolved in $CH₂Cl₂$ and the solutions combined and stirred for several hours. The solutions were filtered and concentrated in vacuo. The oils produced were stirred with petroleum ether until they were converted to fine powders, which were filtered off and dried in vacuo. $[N-n-Pr_4]$ [Cr(α -C₆H₄(PMe₂)₂)Cl₄] was prepared similarly in acetone

Murray, *J. Chem. SOC., Dalton Trans.,* **1872 (1980).**

and $[Ph_3PCH_2Ph][Cr(\sigma-C_6H_4(AsMe_2)_2)Br_4]$ from the ligand, Cr- $Br_3(THF)_3$, and Ph_3PCH_2PhBr .

Acknowledgment. We thank the SRC and BOC (Techsep) for support.

Registry No. [NPr₄] [Cr(o -C₆H₄(PMe₂)₂)Cl₄], 82456-75-5; $[NPr_4][Cr(\sigma-C_6H_4(AsMe_2)_2)Cl_4], 82456-77-7; [NPr_4][Cr (Ph_2PCH_2CH_2PPh_2)Cl_4$], 82456-79-9; $[NPr_4]$ [Cr(Ph₂PCH= $CHPPh_2)Cl_4$], 82469–03–2; $[NPr_4]$ $[Cr(Ph_2AsCH=CHAsPh_2)Cl_4]$, 82456-81-3; [PPh₃CH₂Ph] [Cr(α -C₆H₄(AsMe₂)₂)Br₄], 82456-83-5; $Cr[\phi-C_6H_4(AsMe_2)]_{1.5}Cl_3$, 82456-84-6; $Cr[\phi-C_6H_4(AsMe_2)]_{1.5}Br_3$, 82456-85-7; $[Cr(o-C₆H₄(AsMe₂)₂)₂Cl₂]ClO₄, 14127-30-1; [Cr(o-C₆H₄(AsMe₂)₂)₂Cl₂]ClO₄, 14127-30-1; [Cr(o-C₆H₄(AsMe₂)₂)₂Cl₂]ClO₄, 14127-30$ $C_6H_4(AsMe_2)_2)$ ₂ Br_2]ClO₄, 60536–77–8; CrCl₃(THF)₃, 10170–68–0; $CrBr₃(THF)₃$, 82456-86-8.

> Contribution from the Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221

Electrochemical Oxidation and Reduction of Methylcobalamin and Coenzyme B12

Kenneth A. Rubinson,* Eiki Itabashi, and Harry B. Mark, Jr.

Received March 10, *1982*

Although the electrochemical reduction of alkylcobalamins has been reported, the number of electrons involved and the reaction products were in doubt. $1-3$ The oxidation of these compounds has not previously been studied. We report here the spectroelectrochemical and product analysis of both the electrochemical oxidation and reduction of methylcobalamin and coenzyme B_{12} . The electrochemical reactions of the alkylcobalamins are completely different from those of vitamin B₁₂, cyano[Co(III)]cobalamin, and other cobalamins.^{1,4,5}

Experimental Section

The cyclic voltammetric and coulometric studies of coenzyme B₁₂ and methylcobalamin were carried out in 0.5 M Na₂SO₄. In both cases, Britton-Robinson buffer was used.

⁽⁶⁾ W. Herwig and H. **H.** Zeiss, *J. Org. Chem, 23,* **1404 (1958). (7)** D. J. Gulliver, **W.** Levason, K. G. Smith, M. J. **Selwood,** and *S. G.*

⁽¹⁾ Mark, H. B., Jr.; Kenyhercz, T. M.; Kissinger, P. T. In 'Electrochemical Studies of Biological Systems"; Sawyer, D. T., Ed.; American Chemical Society: Washington, D.C., **1977;** ACS Symp. Ser. No. **38,** pp **1-25.**

⁽²⁾ Lexa, D.; Saveant, J. M. J. Am. Chem. Soc. 1978, 100, 3220-3222.
(3) Hogenkamp, H. P. C.; Holmes, S. Biochemistry 1970, 9, 1886-1892.
(4) Kenyhercz, T. M.; DeAngelis, T. P.; Norris, B. J.; Heineman, W. R.;
Mark, H. B.,

⁽⁵⁾ Lexa, D.; Saveant, J. M.; Zickler, J. *J. Am. Chem. SOC.* **1977,** *99,* **2786-2790.**